Fitness Function
lfunction fit = fitness(x,P,NumberofInputNeurons,NumberofTrainingData,E) % FITNESS FUNCTION FOR pso
InputWeight=x(1,NumberofInputNeurons); % w = rand(1,noofin)
BiasofHiddenNeurons=x(NumberofInputNeurons+1);
ind=ones(1,NumberofTrainingData);
BiasMatrix=BiasofHiddenNeurons(:,ind);% bias
H=(1 ./ (1 + exp(-(InputWeight*P+BiasMatrix)))); % H = (1 / 1 + exp (w *P + bias)
%clear p;
tempH = pinv(H'); % Temph = H^-1
B= tempH * E'; % Beta = H^-1 * E
E = E - (H'*B)';% E = E - H*beta
fit=sqrt(mse(E));
end
Results:
Sonar(Classification)
• Training Accuracy: 85.60%
• Training Time: 541.5938s
• Testing Accuracy: 63.10%
• Testing Time: 0.007s
Wine Quality(Regrassion)
• Training RMSE:0.4930
• Training Time: 359.7500s
• Testing RMSE: 0.4837
• Testing Time: 0.0005s




获取完整代码和文档请阅读全文
未经允许不得转载!基于PSO算法的增量ELM算法【Matlab源码】